Thermometer

A thermometer is a device which is used for the measurement of temperature or as a temperature gradient. A thermometer is used as a temperature sensor which senses the physical change in temperature. It is also used for converting the physical temperature changes into numerical values. This is used in the home, Office, medical, surveying etc.

Send Requirement :


Request a Quote  **Free

No registration, no credit cards required.


Top Brands and Manufacturers

Show All Hide

Manufacturer and Suppliers for Thermometer


Detailed Description for Thermometer

A thermometer is a device that measures temperature or a temperature gradient. A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb on a mercury-in-glass thermometer) in which some physical change occurs with temperature, and (2) some means of converting this physical change into a numerical value (e.g. the visible scale that is marked on a mercury-in-glass thermometer).

There are various principles by which different thermometers operate. They include the thermal expansion of solids or liquids with temperature, or the change in pressure of a gas on heating or cooling. Radiation-type thermometers measure the infrared energy emitted by an object, allowing measurement of temperature without contact.

Thermometers are widely used in industry to control and regulate processes, in the study of weather, in medicine, and scientific research.

Temperature:-

While an individual thermometer is able to measure degrees of hotness, the readings on two thermometers cannot be compared unless they conform to an agreed scale. Today there is an absolute thermodynamic temperature scale. Internationally agreed temperature scales are designed to approximate this closely, based on fixed points and interpolating thermometers. The most recent official temperature scale is theInternational Temperature Scale of 1990. It extends from 0.65 K (−272.5 °C; −458.5 °F) to approximately 1,358 K (1,085 °C; 1,985 °F).

Physical Priniciple:-

Thermometers may be described as empirical or absolute. Absolute thermometers are calibrated numerically by the thermodynamic absolute temperature scale. Empirical thermometers are not in general necessarily in exact agreement with absolute thermometers as to their numerical scale readings, but to qualify as thermometers at all they must agree with absolute thermometers and with each other in the following way: given any two bodies isolated in their separate respective thermodynamic equilibrium states, all thermometers agree as to which of the two has the higher temperature, or that the two have equal temperatures. For any two empirical thermometers, this does not require that the relation between their numerical scale readings be linear, but it does require that relation to be strictly monotonic. This is a fundamental character of temperature and thermometers.

Primery & Secondary Thermometer:-

Thermometers can be divided into two separate groups according to the level of knowledge about the physical basis of the underlying thermodynamic laws and quantities. For primary thermometers the measured property of matter is known so well that temperature can be calculated without any unknown quantities. Examples of these are thermometers based on the equation of state of a gas, on the velocity of sound in a gas, on the thermal noise (see Johnson–Nyquist noise),voltage or current of an electrical resistor, on blackbody radiation, and on the angular anisotropy of gamma ray emission of certain radioactive nuclei in a magnetic field. Primary thermometers are relatively complex.

Secondary thermometers are most widely used because of their convenience. Also, they are often much more sensitive than primary ones. For secondary thermometers knowledge of the measured property is not sufficient to allow direct calculation of temperature. They have to be calibrated against a primary thermometer at least at one temperature or at a number of fixed temperatures. Such fixed points, for example, triple points and superconducting transitions, occur reproducibly at the same temperature.

Thermometers can be calibrated either by comparing them with other calibrated thermometers or by checking them against known fixed points on the temperature scale. The best known of these fixed points are the melting and boiling points of pure water. (Note that the boiling point of water varies with pressure, so this must be controlled.)


Question And Answer

Get Prices

Answers to your queries


Buying Tip- See what like buyers had to say!



SUBMIT