Plastic Thermoforming Machine

Thermoforming is a making process where a plastic sheet is heated to a pliable forming temperature.The sheet,when citing to thinner gauges and certain material types, is heated in an oven to a high-enough temperature that permits it to be extent onto a mold and cooled to a finished shape.The power ranges from 18KW and above,material used for the frame is Carbon Steel.

Send Requirement :

Request a Quote  **Free

No registration, no credit cards required.

Top Brands and Manufacturers

Show All Hide

Manufacturer and Suppliers for Plastic Thermoforming Machine

Detailed Description for Plastic Thermoforming Machine

Thermoforming is a manufacturing process where a plastic sheet is heated to a pliable forming temperature, formed to a specific shape in a mold, and trimmed to create a usable product. The sheet, or "film" when referring to thinner gauges and certain material types, is heated in an oven to a high-enough temperature that permits it to be stretched into or onto a mold and cooled to a finished shape. Its simplified version is vacuum forming.

In its simplest form, a small tabletop or lab size machine can be used to heat small cut sections of plastic sheet and stretch it over a mold using vacuum. This method is often used for sample and prototype parts. In complex and high-volume applications, very large production machines are utilized to heat and form the plastic sheet and trim the formed parts from the sheet in a continuous high-speed process, and can produce many thousands of finished parts per hour depending on the machine and mold size and the size of the parts being formed.

Thermoforming differs from injection molding,  blow molding, rotational molding and other forms of processing plastics. Thin-gauge thermoforming is primarily the manufacture of disposable cups, containers, lids, trays, blisters, clamshells, and other products for the food, medical, and general retail industries. Thick-gauge thermoforming includes parts as diverse as vehicle door and dash panels, refrigerator liners, utility vehicle beds, and plastic pallets.

In the most common method of high-volume, continuous thermoforming of thin-gauge products, plastic sheet is fed from a roll or from an extruder into a set of indexing chains that incorporate pins, or spikes, that pierce the sheet and transport it through an oven for heating to forming temperature. The heated sheet then indexes into a form station where a mating mold and pressure-box close on the sheet, with vacuum then applied to remove trapped air and to pull the material into or onto the mold along with pressurized air to form the plastic to the detailed shape of the mold. (Plug-assists are typically used in addition to vacuum in the case of taller, deeper-draw formed parts in order to provide the needed material distribution and thicknesses in the finished parts.) After a short form cycle, a burst of reverse air pressure is actuated from the vacuum side of the mold as the form tooling opens, commonly referred to as air-eject, to break the vacuum and assist the formed parts off of, or out of, the mold. A stripper plate may also be utilized on the mold as it opens for ejection of more detailed parts or those with negative-draft, undercut areas. The sheet containing the formed parts then indexes into a trim station on the same machine, where a die cuts the parts from the remaining sheet web, or indexes into a separate trim press where the formed parts are trimmed. The sheet web remaining after the formed parts are trimmed is typically wound onto a take-up reel or fed into an inline granulator for recycling.

Most thermoforming companies recycle their scrap and waste plastic, either by compressing in a baling machine or by feeding into a granulator (grinder) and producing ground flake, for sale to reprocessing companies or re-use in their own facility. Frequently, scrap and waste plastic from the thermoforming process is converted back into extruded sheet for forming again.


Wood Patterns - Wood patterns are generally the first stage to a thermoforming project. They are relatively inexpensive and allow the customer to make changes to their design very easily. The number of samples that one is able to get from a wood pattern depends on the size of the part and the thickness of the material. Typically, wood patterns are used to gauge general functionality of both the part and the thickness of the material. Once the specifications of the part have been met, the wood pattern is then used to create a ceramic composite mold, or cast aluminum mold for regular production.

Cast aluminum Molds - Cast aluminum molds are cast at a foundry and typically have temperature control lines running through them. This helps to regulate the heat of the plastic being formed as well as speed up the production process. Aluminum molds can be male or female in nature and can also be used in pressure forming applications. The main drawback with this type of mold is cost.

Machined aluminum Molds - Machined aluminum molds are like cast aluminum except they are cut out of a solid block of aluminum using a CNC machine and some sort of CAD program. Typically machined aluminum is used for shallow draw parts out of thin-gauge material. Applications may include packaging as well as trays. Again, cost is a significant factor with this type of tooling.

Composite Molds - Composite molds are a lower cost alternative to cast or machined aluminum molds. Composite molds are typically made from filled resins that start as a liquid and harden with time. Depending on the application, composite molds last a relatively long time producing high quality parts. Within the category of composite molds, the subset of "Ceramic" molds has consistently proven to be the most durable. While not temperature controlled, these molds can run nearly as fast as Cast or Machined aluminum, yet at a substantially lower price point. Suitable for all but the highest volume production and strictest tolerances.

Question And Answer

Get Prices

Answers to your queries

Buying Tip- See what like buyers had to say!